
94-775 Unstructured Data Analytics

Nearly all slides by George H. Chen 
with a few by Phillip Isola

Lecture 11: Hyperparameter tuning; intro to 
neural nets & deep learning



Quiz 2

Solutions are in Canvas -> Files -> “Quiz 2 solutions.pdf”

Regrade requests (use Gradescope’s regrade request feature) 
are due Friday April 18, 11:59pm 

(for if you think there’s a genuine grading error)

As I intended, Quiz 2 was easier than Quiz 1

Remember: letter grades are assigned based on a curve



Reminder: if you get instructor-endorsed 
posts in Piazza, you could earn up to 20 

bonus points on your Quiz 2!

We plan on shutting down the Piazza forum on 
Monday April 28, 11:59pm

Please get your instructor endorsements by then!



(Flashback) Example: k-NN Classification

What should the label of 
this new point be?

3-NN classifier prediction

We just saw: k = 1, k = 2, k = 3

What happens if k = n?



How do we choose k?

What I’ll describe next can be used to select 
hyperparameter(s) for any prediction method

Fundamental question: 
How do we assess how good a prediction method is?

(Flashback)



(Flashback) Hyperparameters vs. Parameters

• We fit a model’s parameters to training data 
(terminology: we “learn” the parameters)

• We pick values of hyperparameters and they do not automatically 
get fit to training data

• Example: Gaussian mixture model 
• Hyperparameter: number of clusters k 
• Parameters: cluster probabilities, means, covariance matrices

• Example: k-NN classification 
• Hyperparameter: number of nearest neighbors k 
• Parameters: N/A

Actually, there’s another hyperparameter: distance function to use 
(for simplicity, we assume Euclidean distance for now)



⚠ Major assumption: 
training and test data “look alike” 

(technically: training and test data are i.i.d. 
sampled from the same underlying distribution)

Prediction is harder when training and test data appear quite different!
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Example: Each data point is an email and 

we know whether it is spam/ham
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For k = 1, 2, …, some user-specified max:

There are many score functions possible
Examples: raw accuracy, true positive rate/recall, false positive rate, precision



Terminology Remarks
• What we’re using is commonly called a train/validation split

• If you also consider that there’s a test set that’s not part of 
train/validation data: division is called train/validation/test split

• Warning: in the machine learning community, what I’m calling the 
“proper training data”/“proper training set” is commonly also called 
the “training data”/“training set” even though it is typically a subset of 
the full training data (that we split into proper training/validation sets)

• Put another way: what precisely the “training data” refers to can be 
ambiguous as it could mean the full training data or the 
full training data minus the validation data

• In 94-775, to avoid confusion, we use the somewhat non-standard 
terminology “proper training set”/“proper training data” to refer to 
the the full training data minus the validation data
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with distance dist 𝜌
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trained model predicts on validation data
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For k, 𝜌 = (1, “Euclidean”), (1, “Cosine”), …:

There are many score functions possible
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The rest of the prediction models we 
consider will be based on neural nets 

(which commonly have hyperparameters!)
Neural net models can be tuned in the same manner 

we just saw for k-NN classification

Important: you may have seen cross-validation before

• If you don’t know what this is, don’t worry about it

• Cross-validation is commonly too expensive for neural net 
training so we stick to the train/val split strategy



Neural Nets & Deep Learning
Extremely useful in practice:

• Human-level image classification

• Human-level speech recognition

• Human-level in machine translation, text-to-speech

• Self-driving cars

• Better than humans at playing Go and many other games

• Capable of generating fake images, video, and audio that look real

• Human-level chatbots (ChatGPT, GPT4.0, Gemini, Claude, …)

⚠ We don’t fully understand when many of these technologies fail 
or how best to prevent their misuse

⚠ All of this technology will get better over time



What are neural nets & what does 
“deep learning” refer to?



Serre, 2014Slide by Phillip Isola



Brain/Machine “clown fish”

Basic Idea

Slide by Phillip Isola
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“clown fish”

Feature extractors Classifier

Classical Approach

Slide by Phillip Isola
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Neural Network

Slide by Phillip Isola
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“clown fish”

Learned

Deep Neural Network

Slide by Phillip Isola

Deep learning just refers to learning deep neural nets



Crumpled Paper Analogy

Analogy: Francois Chollet, photo: George Chen

binary classification: 2 crumpled sheets of 
paper corresponding to the different classes

deep learning: series (“layers”) of simple 
unfolding operations to try to disentangle 

the 2 sheets



Representation Learning

“clown fish”

Learned

Visualize 

(e.g., t-SNE)

Visualize

Visualize

Visualize

Visualize

Visualize

Visualize

Each layer’s output is another way we could represent the input data
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Why Does Deep Learning Work?
Actually the ideas behind deep learning are old (~1980’s)

• Big data

• Better hardware

GPU’s TPU’s
CPU’s 

& Moore’s law

• Better algorithms

There’s even a patent from 1961 that basically 
amounts to a convolutional neural net for OCR

Many companies now make dedicated hardware for 
deep nets (e.g., Google, Apple, Tesla)



Structure Present in Data Matters

Neural nets aren’t doing black magic

• Image analysis: convolutional neural networks (convnets) neatly 
incorporates basic image processing structure

• Time series analysis: transformers learn how to weight previous 
time steps’ contributions to a prediction at the current time step

• Note: text is a time series of tokens

• Note: video is a time series of images



Handwritten Digit 
Recognition Example

Walkthrough of 2 extremely simple neural nets



Handwritten Digit Recognition

length 784 vector 
(784 input nodes)

28x28 image

flatten

linear layer 
with 10 nodes

final 
output

weighted sums activation

(can be 
thought of as 

post-
processing)

(parameterized 
by a weight 

matrix W and a 
bias b)



Handwritten Digit Recognition

length 784 vector 
(784 input nodes)

weighted sums

(parameterized 
by a weight 

matrix W and a 
bias b)

input linear

W b

(1D numpy array with 784 entries) (1D numpy array with 10 entries)

(2D numpy array of 
dimensions 
10-by-784)

(1D numpy array 
with 10 entries)

linear layer 
with 10 nodes



length 784 vector 
(784 input nodes)

weighted sums

(parameterized 
by a weight 

matrix W and a 
bias b)

input linear

W b

(1D numpy array with 784 entries) (1D numpy array with 10 entries)

(2D numpy array of 
dimensions 
10-by-784)

(1D numpy array 
with 10 entries)

linear layer 
with 10 nodes

Handwritten Digit Recognition

…

linear[0] = np.dot(input, W[0, :]) + b[0]
linear[1] = np.dot(input, W[1, :]) + b[1]

linear[i] = input[j] W[i,j]� + b[i]

<latexit sha1_base64="Lgf3EoMWbxF0jLBUMCJvIQ7Zw5E="></latexit>

783X

j=0



Handwritten Digit Recognition

length 784 vector 
(784 input nodes)

weighted sums

(parameterized 
by a weight 

matrix W and a 
bias b)

linear layer 
with 10 nodes



Handwritten Digit Recognition

length 784 vector 
(784 input nodes)

28x28 image

flatten

linear layer 
with 10 nodes

final 
output

weighted sums activation

(can be 
thought of as 

post-
processing)

(parameterized 
by a weight 

matrix W and a 
bias b)



Handwritten Digit Recognition

final 
output

activation

(can be 
thought of as 

post-
processing)

Many different activation functions possible

Example: Rectified linear unit (ReLU) 
zeros out entries that are negative
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linear

final = np.maximum(0, linear)

linear layer 
with 10 nodes

final
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ReLU



Handwritten Digit Recognition

final 
output

activation

(can be 
thought of as 

post-
processing)

Many different activation functions possible

Example: softmax converts a table of numbers 
into a probability distribution

exp = np.exp(linear) 
final = exp / exp.sum()
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linear layer 
with 10 nodes

linear final
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0.46

softmax



Handwritten Digit Recognition

final 
output

activation

(can be 
thought of as 

post-
processing)

Many different activation functions possible

Example: linear activation does nothing

final = linear
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linear layer 
with 10 nodes

linear final
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linearThis is equivalent to there being 
no activation function



length 784 vector 
(784 input nodes)

28x28 image

flatten

linear layer 
with 10 nodes

final 
output

weighted sums softmax

(parameterized 
by a weight 

matrix W and a 
bias b)

Handwritten Digit Recognition
Pr(digit 0)

Pr(digit 1)

Pr(digit 2)

Pr(digit 9)

Pr(digit 3)

Pr(digit 4)

Pr(digit 5)

Pr(digit 6)

Pr(digit 7)

Pr(digit 8)

Desired result



Input

Handwritten Digit Recognition

Linear 
(10 nodes)

Flatten Softmax

Training label: 6

Loss/“error” error

Popular loss function for 
classification: 

categorical cross entropy

Error is 
averaged across 

training 
examples

Learning this neural 
net means finding 

W and b that 
minimize categorical 

cross entropy loss

1

estimated Pr(digit 6)
log

Also called 
fully-connected or 

dense layer

⚠ In PyTorch, softmax is 
included as part of the cross 

entropy loss



Input
Linear 

(10 nodes)
Flatten Softmax

Training label: 6

Loss/“error” error

Popular loss function for 
classification: 

categorical cross entropy

1

estimated Pr(digit 6)
log

Input
Linear 

(10 nodes)
Flatten Softmax

Training label: 5

Loss/“error” error

Popular loss function for 
classification: 

categorical cross entropy

1

estimated Pr(digit 5)
log

average 
error

Handwritten Digit Recognition
Important: across different 
training data, we are using 

the same linear layer 
(same W and b parameters)

Learning this neural net 
means finding 

W and b that minimize 
categorical cross 

entropy loss

(averaged across training examples)

Example: 
2 training points



Input
Linear 

(10 nodes)
Flatten Softmax

Training label: 6

Loss/“error” error

Handwritten Digit Recognition

Categorical 
cross entropy

This neural net has a name: multinomial logistic regression 
(when there are only 2 classes, it’s called logistic regression)



Input

Handwritten Digit Recognition

Flatten Linear 
(512 nodes)

ReLU

Training label: 6

Loss error

Different linear layers; each has its 
own weight matrix and bias vector

Softmax

Basic building block of 
neural nets: 

linear layer with 
nonlinear activation

Linear 
(10 nodes)

Categorical 
cross entropy

Learning this neural net ⇒ learn parameters of both linear layers



Input

Handwritten Digit Recognition

Flatten Linear 
(512 nodes), 

ReLU

Training label: 6

Loss error

Linear 
(10 nodes), 

Softmax Important: in lecture, 
I sometimes use this 
shorthand notation 

(specifying activation to 
go with each linear layer)

Categorical 
cross entropy

This neural net is called a multilayer perceptron 
(# nodes need not be 512 & 10; 

activations need not be ReLU and softmax)



PyTorch
• Designed to be like NumPy

• A lot of (but not all) function names are the same as numpy 
(e.g., instead of calling np.sum, you would call torch.sum, etc)

• What’s the big difference then? Why not just use NumPy?

• PyTorch tensors keep track of what device they reside on
• ⚠ For example, trying to add a tensor stored on the CPU and a 

tensor stored on a GPU will result in an error!

• PyTorch tensors can automatically store “gradient” information 
(important for learning model parameters; details in later lecture)

PyTorch code is often harder to debug than NumPy code

There’s a PyTorch tutorial posted in supplemental reading

• ⚠ PyTorch does not use NumPy arrays and instead uses tensors 
(so instead of np.array, you use torch.tensor)



Handwritten Digit Recognition

Demo


